CR-8000 Resource Library

Icon

Webinar: Improve Flex PCB Manufacturing Productivity with Better DFM Checks

This webinar will discuss the challenges of producing a manufacturable Flex design as well as provide information on a tool based solution to address these challenges. Flex designs create challenges for most PCB tools in that the traditional PCB object checks do not account for the nuances of Flex checks.

Icon

Webinar: Does the Release to Manufacturing Process Keep You up at Night?

This webinar will examine many of the concerns and challenges faced when producing release packages.

Icon

Webinar: Transitioning from Architecture Design to Detailed Design

This webinar is Part 3 of a 3 part series covering the systems engineering process of converting product or system requirements into a viable and robust hardware architecture and then moving that architecture directly into detailed design without any manual re-entry.

Icon

Webinar: Creating and Optimizing a Hardware Architecture

This webinar is Part 2 of a 3 part series covering the systems engineering process of converting product or system requirements into a viable and robust hardware architecture and then moving that architecture directly into detailed design without any manual re-entry.

Icon

Webinar: Hardware Architecture Design and Validation

This webinar is Part 1 of a 3 part series covering the systems engineering process of converting product or system requirements into a viable and robust hardware architecture and then moving that architecture directly into detailed design without any manual re-entry.

Icon

Webinar: Electro-Magnetic Compatibility (EMC) Design Basics

In this webinar we will explore the process for performing a quick EMC analysis followed by a more in-depth EMC analysis driven by properties assigned during schematic capture.

Icon

Webinar: 3D Multi-board Design Basics - Don't Fall Behind

This webinar will discuss and demonstrate the key concepts behind a 3D multi-discipline design where supplychain, PCB, MCAD and analysis all converge into a next generation design process.

Icon

Webinar: Product-based Virtual Prototyping Just Got Easy

This webinar will demonstrate a virtual prototyping solution that validates a set of product requirements against a proposed detailed design.

Icon

Webinar: Protect Your ECAD Library and PCB Design Intellectual Property

This webinar will demonstrate how next generation ECAD software is being used to address the IP theft challenge with permission controls that enable users to define with a high level of granularity the design information that will be included and excluded from the published data set.

Icon

Webinar: PCB Design Using an Engineering Knowledge Base

During this webinar we will demonstrate how to create, manage and grow an engineering knowledge base, and use that information to greatly improve your PCB design process.

Icon

Webinar: System-level Circuit Engineering

Traditional schematic entry tools offer the ability to create a single logical design to drive a single PCB layout.

Icon

Webinar: Avoiding Poor FPGA I/O Assignments for PCB Design

The webinar will explore various points in the design flow where co-design of the FPGA and board layout can take place; this includes library part creation, schematic entry, I/O optimization and pin assignment management during board layout. See how a FPGA / PCB co-design process can improve overall design quality in less time.

Icon

Webinar: Eliminate DDR3 Timing Errors with Constraint-based Routing

This webinar explores how to realize a DDR3 system using constraints and validate the design’s timing margins.

Icon

Webinar: I/O Optimization with 3D SoC, SiP, and PCB Co-design

This webinar is aimed to help the audience identify disconnects in the chip, package, and board design environment; and explore methods to optimize interconnects, improve design collaboration, and enable signal traceability and analysis across the complete system.

Icon

Webinar: Power Integrity Essentials for the PCB Design Process

This session presents aspects of achieving good power integrity by defining key concepts, showing example layouts, and using PI analysis tools to help better understand PI effects and mitigation techniques.

Icon

Webinar: Avoid PCB & Enclosure Collisions with 3D Product Visualization

This webinar will present an approach to make ECAD / MCAD collaboration part of your standard design process. Easily import MCAD data and orient multiple PCBs within the enclosure and detect collisions. Make corrections and re-analyze.

Icon

Webinar: Bridging the Gap between Electronic and Mechanical Design

Design rework can cost you time and money. And going back and forth between ECAD and MCAD departments takes time.

Icon

System-level Design Planning

Often, the planning of an electronic system is done with disparate tools that were not designed for electronic system planning. This is not only inefficient, requiring many workarounds, but later forces you to re-enter your design planning data into the design authoring tools.

    Icon

    White Paper: The Internet of Things and Modular Design

    The advent of the Internet of Things (IoT) offers the potential to automatically collect detailed performance information from every device in the field at minimal cost.

    Icon

    White Paper: End-to-end Hardware Architecture Design and Validation

    This white paper explores the benefits of bringing all these design domains together in a single tool that enables the translation of product requirements into an initial hardware architecture, ready for detailed design.

    Icon

    White Paper: 3D Convergence of Multi-board PCB and IC Packaging Design

    The electronic product design process is being challenged like never before, with the need to develop feature-rich, light, compact products at a lower cost in less time.

    Icon

    White Paper: Design Products, Not Just Boards - The Shift to Product-centric Design

    This white paper explores the benefits of product-centric design and how it differs from current-generation PCB-centric processes and tools.

    Icon

    White Paper: Intellectual Property Management Tools Help Protect Against Design Theft

    Intellectual property (IP) theft is an ever-present danger to companies who subcontract manufacturing to electronic manufacturing services (EMS) providers.

      Icon

      Mecalac (Formerly Terex GB) Cuts the Time Taken to Develop Right-First-Time Cable Harnesses for Its Heavy Plant Vehicles

      Mecalac Construction Equipment UK is a global manufacturer of compact plant machinery, providing market-leading solutions that maximize return on investment.

      Read More
      Icon

      Toshiba Achieves Significant Product Size Reduction using 3D Chip, Package, Board Co-design in CR-8000 Design Force

      Toshiba faced a difficult design problem: their TransferJet™ technology was embedded in a customer cell phone, and when the next rev of the phone came around, they learned that they needed to shrink the board from 8mm x 8mm to 4.5mm x 6mm, and they had to shrink the module thickness from 1.7mm to 1.0mm.

      Read More
      Icon

      Endress+Hauser Standardizes PCB Engineering and Production Processes for Industrial Measurement Products Across Distributed Locations

      Endress+Hauser is a global leader in measurement instrumentation, services and solutions for industrial process engineering.

      Read More
      Icon

      Renishaw Gets Better Fit and Impedance Control for Complex Flexible PCBs in Metrology Instruments using CR-8000

      Working in 3D for the first time, Renishaw’s PCB designers noticed a host of benefits, including fixing housing fit issues upfront and easier component placement.

      Read More
      Icon

      Rohde & Schwarz Manages Variants with Increased Efficiency using Zuken's CR-5000 Suite

      Rohde & Schwarz manages variants with increased efficiency using Zuken’s CR-5000 suite. In a sophisticated design flow, the schematic provides a master data set that drives all PCB assembly variants.

      Read More
      Icon

      ARBURG - Getting Designs Right the First Time

      ARBURG is one of the world‘s leading manufacturers of injection molding machines.

      Read More
        Icon

        Datasheet: System Planner

        System Planner is a system-level design environment for architecture of electronics systems and products.

        Download
        Icon

        Datasheet: CR-8000 Library

        The use of common library data throughout the whole design cycle is an essential element of the CR-8000 constraints-driven, right-by-construction methodology.

        Download
        Icon

        Datasheet: Advanced Design for Manufacturing (ADM)

        In the design and production of electronic products, manufacturability checks are difficult to perform manually and are often made after the design process has been completed.

        Download
        Icon

        Datasheet: Graphical Pin Manager - FPGA/PCB Co-design

        Engineers continue to embrace programmable logical devices within their product designs in numerous applications across a wide range of industries.

        Download
        Icon

        Datasheet: Design Force - Chip, Package and Board Co-Design

        Comprehensive system co-design recognizes the interaction between chip, package, and board data to reduce complexity, size and cost of the overall system.

        Download
        Icon

        Datasheet: Design Gateway - Circuit Engineering

        Design Gateway is Zuken’s platform for logical circuit design and verification of single and multi-board system-level electronic designs.

        Download
        Icon

        Datasheet: Circuit DR Navi - Engineering Knowledge

        CR-8000 Circuit DR Navi helps design teams consolidate engineering expertise and best practices into a central repository integrated with the design process.

        Download
        Icon

        Datasheet: Design Force - Advanced Packaging

        Traditional two dimensional design tools often fall short when it comes to studyingthe structure and routability of the advanced packages required for today’scomplex designs.

        Download
        Icon

        Brochure: DS-CR

        PCB Library and Design Data Management

        Download
        Icon

        Design Force - Multi-board System Design

        Design Force fully leverages the latest industry hardware and software capabilities, allowing users to design in a native 3D environment, obtaining optimal performance by utilizing native 64-bit, multi-threading, multi-core processors.

        Download
          Icon

          Tech Tip: CR-8000 Design Gateway 2018 Execute Macro to Multiple Sheets

          There’s an exciting new option in CR-8000 Design Gateway 2018: “Execute Macro to Multiple Sheets. The new functionality allows you to execute macros on specified sheets all at once.

          Icon

          Tech Tip: Using Enhanced Reinforce Via Functionality to Add Shielding Vias in CR-8000 Design Force

          Design Force features an option to shield signals when creating their routes. The shield option automatically inserts shielding side by side, above and below, or on all four sides of the signal being routed. Figure 1 shows a signal (blue trace in the middle) shielded on all four sides by the green conductors, which are connected to the ground.

          Icon

          Tech Tip: CR-8000 Design Force 2018 Reinforce Via Functionality

          In the 2018 release of CR-8000 Design Force, an amazing new improvement has been made to reinforce via.

          Icon

          Tech Tip: Use 'Generate Bump Line' in Design Force to Match Lengths of Positive and Negative Tracks for Differential Pairs

          In CR-8000 Design Force, the Generate Bump utility allows the designer to add a bump line either single or sequentially to a differential pair route. Bump line size, style and space can be set in the dialog. Accurate length differences can be seen in the Constraint Browser during this process.

          Icon

          Faster Board Speeds Demand Constraint-driven Design

          Modern PCB design tools permit the definition of design constraints, including constraints relating to high-speed design and EMC, such as topology of connectors (routing pin sequence), or overshoot and timing budgets, for example.

          Icon

          Data: The Secret of Success Under Industry 4.0?

          In the world of engineering, many companies store their design data within their organization’s Enterprise Resource Planning (ERP) system. But the ‘resource’ it focusses on tends to be people and materials. Because of this, most engineering departments also use complementary solutions for Product Life Cycle (PLM), Product Data Management (PDM), Material Requirement Planning (MRP) and Document Management Systems (DMS).

          Icon

          Tech Tip: Auto-hide Panels in CR-8000 Design Gateway

          Oftentimes when we’re working on schematics, the panel menus take up a ton of space on the screen. This is where the Design Gateway auto-hide feature comes in handy.

          Icon

          A Record-setting Zuken Innovation World Americas

          Zuken Innovation World Americas 2018 took place recently in San Diego and was record-setting!  This was by far the largest ZIW event held in the Americas based on registrations, partners and international visitor attendance. Customer participation also set a record with over 25% of the sessions being delivered by customers. But, breaking records is only part of the story.

          Icon

          Zuken Pulling Ahead in Automotive PCB Design

          Zuken has been developing PCB design tools for the automotive market for years. With automotive electronics worth over $200 billion globally, and growing every day, Zuken is preparing for a brave new world of smart cars, and autonomous and electric vehicles. I spoke with Humair Mandavia, chief strategy officer with Zuken, and asked him about the challenges facing automotive PCB designers, and the trends he’s seeing in the constantly evolving segment of the industry.

          Icon

          Tech Tip: Fanout using CR-8000 Design Force EX

          CR-8000’s Design Force Dragon EX tool can be used to fanout BGAs. Simply draw a Dragon area around your BGA. Then select the Dragon area and create a strategy to fanout the pads of your BGA. You can create steps to fanous pads based on signal names. The ground pins can be fanned out to the ground plane layer using a specified via. You can control the layers used, fanout direction, and vias.

           

          Icon

          Tech Tip: Prevent Ghosting When Cursor Passes over Template Area in CR-8000

          Ghosting of the template areas can be seen when dragging the cursor over its outline regardless of the visibility of the template layers. This will happen when the template layers are set as “Selectable layer” in the Layer Settings dialog. This is most common so the designer can select templates regardless of the active layer.

          Icon

          Mastering Power Integrity: First Get Your Power Distribution System Right

          Even though power integrity strategies are now discussed on a daily basis, power distribution design is still a third order design aspect, done late in the design. It involves often a “design-by-hope” approach doing a copper pouring of the power-templates, and additionally sprinkling the board with decoupling capacitors. Such traditional methods of designing complex PCBs, and their power distribution systems (PDS) in particular, cost companies time and money in both the design and manufacturing stages.

          Icon

          Tech Tip: Batch Creation of Pin Pairs in CR-8000

          Creating pin pairs in the Constraint Browser is fine for one or two nets at a time, but if you want to create pin pairs for a whole design, I recommend using an easy, single-step macro.

          Icon

          Tech Tip: CR-8000 Design Force Tip Lengthening Patterns

          Did you know when editing lengthening patterns in CR-8000 Design Force, you can modify the lengthening pattern, and meet your constraints all in one step

          Icon

          Lower Manufacturing Costs with XJTAG's New Design Gateway Plugin

          XJTAG has partnered with Zuken create a new plugin for Design Gateway and is offering it free of charge. The plugin, called XJTAG DFT Assistant, helps to validate correct JTAG chain connectivity, while displaying boundary scan access and coverage onto the schematic diagram through full integration with Design Gateway. So if you are using boundary scan today or want to incorporate it in your next design, the XJTAG DFT Assistant plugin is a tool you should be using.

          Icon

          Use Better DFM Checks to Improve Flex PCB Manufacturing Productivity

          Flex designs pose unique challenges for most PCB tools because traditional object checks don’t account for Flex check nuances. They present a new set of objects that are best accounted for during the design phase.

          Icon

          EMC = DRC²: The Importance of EMC Rule Checking

          When it comes design rule checks for PCB designs, there are checks that should be performed that are just as important as spacing rules. Strict adherence to basic PCB design rule checks, such as track to track, track to via, via to via, pad to track etc. – though necessary to avoid short circuits – only scratch the surface when trying to identify potential design flaws. I often see PCB designs that are completed based on this premise and wonder what else could be hiding in the design?

          Icon

          Tech Tip: How to Generate Offset Vias from a Via in CR-8000 Design Force

          CR-8000 Design Force 2017 has improved the offset via function by adding efficiency in pulling out tracks from vias, creating BGA designs and build-up designs.

          Icon

          Tech Tip: Mirroring Routed Double-sided Components in CR-8000 Design Force

          A common task that is often dreaded among PCB designers is having to relocate a large point-count BGA that’s fanned out, and even partially escaped routed, to the opposite side of a PCB.

          Icon

          Advanced Packaging with Zuken's CR-8000 Design Force

          Advanced packaging techniques such as system-in-package (SiP), fan-out wafer-level packaging (FOWLP), 3D die stacks, etc. have been around for over a decade, yet with any other EDA design tool, it is still a tedious, time consuming, and error-prone process to implement these designs. It seems surprising that there are so few reliable EDA solutions out there, but CR-8000 Design Force is definitely the tool to look to when tackling advanced package design!

          Icon

          E/E Design Process Evolution with MBSE

          This is an exciting time in the product development world. Increasing product complexity is driving the need for a design process evolution. Not long ago the detailed design process was the centerpiece of product development. But the need for functional and physical design accuracy is forcing the product development process to evolve. In response, the product development process is both converging and expanding.

          Icon

          How Virtual Prototyping Tools Can Help Decide if Fan-out Wafter-level Packaging is Right for Your Product

          Put simply, FO-WLP establishes die-to-die and die-to-ball grid array (BGA) connectivity directly through packaging redistribution layers (RDLs), eliminating the packaging substrate used in more-established flip-chip and wafer-level chip scale packages (WLCSP).

          Icon

          Tech Tip: Embedding Passive Components in Design Force

          When it comes to advanced miniaturization of electronic products such as wearables and mobile devices, it is crucial that your design process utilize tools that meet and exceed engineering requirements. In this video, we will show how embedded passive devices are created and how they can be moved from layer to layer in Design Force.

          Icon

          Design Discipline Convergence Continues with the CR-8000 2017 Release

          If you haven’t noticed, the electronic design process is evolving with the rise of Model-Based Systems Engineering (MBSE) and the demands of the Internet of Things (IoT). The standard 2D single board PCB design process can’t keep up with the demands of system-level design required by today’s more complex products.

          Icon

          Translating New Product Requirements into Hardware Architecture

          Defining initial hardware architecture requires many decisions, most of which impact a variety of different stakeholders and requirements – including multiple design tools – circuit design, PCB layout, mechanical design, spreadsheets, etc. that are used to track different elements of the design. It sometimes seems that by the time you determine the impact of a decision on all the requirements, the design has changed to a point that your decision is irrelevant.

          Icon

          Proliferation of New Manufacturing Technologies Challenges Design for Manufacturability

          Original equipment manufacturers (OEMs) can easily feel like a kid in a candy store with so many recently developed manufacturing technologies to choose from. There’s flex boards, rigid flex hybrids, chip on board, embedded components, low temperature co-fired ceramic, to name a few. Each of these technologies offers its own unique mix of functionality, cost, size, weight, delivery time and other benefits.

          Icon

          Hardware Architecture Design Becomes the Next Competitive Requirement

          After a lengthy quiet period, the hardware design process is suddenly experiencing numerous changes in the form of design discipline convergence and process extension. The widely used 2D single board PCB detailed design process is being replaced by a 3D multi-board and multi-discipline one. What is happening in detailed design is a great blog topic, but I want to talk about what is happening upstream from the detailed design process – hardware architecture design.

          Icon

          Predictive Failure Analysis Can Improve Product Quality

          We all know that manufacturing yields and costs are the driving force behind product development, rather than product quality. You can buy a Design for Manufacturing (DFM) tool, but try buying a Design for Quality tool – good luck! The best way of measuring product quality is finding out how your product performs in the hands of the customer. But measuring product performance, and quantifying quality, is difficult at best for most products.

          Icon

          The High-Speed Design Challenge of Maintaining PCB Signal Integrity in a 3D Design Environment

          Not long ago, third dimension issues didn’t figure too much in high-speed design calculations; but signals have become so fast that those vias don’t affect them the same way they did before. Those really fast signals have become part of super-common bus standards that are used in all kinds of products.

          Icon

          From Outer Space to a New Technology Space: Inside an IoT Start-up as It Counts Down to Launch

          Pascal Nsame spent years at IBM, including stints on NASA’s first Mars Rover project, which is still in operation after 12 years (something no Mars Rover has ever done); the world’s most energy-efficient supercomputer project ranked #1 for more than 10 years; the memory sub-system of the IBM Watson Project, which was the first to compete and win against a human opponent in the Jeopardy question and answer quiz; and he’s named inventor or co-inventor on a host of patents.

          Icon

          Getting Signal Integrity Right by Design

          Modern PCB designs have IOs reaching speeds of multi Gigabits per second, making signal integrity analysis an imperative for any product in the design phase. As the industry spends increasing amounts of time on finding and fixing these issues, it’s worthwhile any designers out there that are not already doing so, investing some energy in reducing design cycle time through early identification of high speed issues like crosstalk and return path discontinuity etc. Let me go into why it’s worth your effort…

          Icon

          Turning System Requirements into a Viable Hardware Architecture

          What does it take to develop a successful new product in today’s highly competitive global electronics marketplace? It all starts with a systems architect tasked with seamlessly moving between the many different disciplines – functional block diagramming, floor planning, space planning, cost estimating, etc.  required to define the hardware architecture. This special guy or gal then must work the magic needed to define a hardware architecture that meets all of the targets – functionality, cost, weight, style, battery life, etc. – required to ensure that success of the product.

          Icon

          Are You Making the Most of Modular Design with Design Reuse?

          Although we’ve been talking about it for years, in PCB design it has yet to catch on in quite the same way despite there being a host of benefits to be reaped from modular design practices. So in the first of this two-part series I’d like to challenge you to ask yourself a few questions about how you reuse designs.

          Icon

          IoT Makes Complex Design Problems Mass Market

          As smart integrated technology connected to the internet becomes mainstream across the consumables industry, complex design challenges are no longer limited to the elite innovating companies, but spread to the far reaches of manufacturers who juggle the function, versus cost and competitive forces trade-off.

          Icon

          Reduce Thermal Analysis Time Early on in the Design Process with Chip-Package-Board Co-design

          Thermal issues have long been one of the many Achilles heels in electronics design, in much the same way that electromagnetic noise and interference messes with your board. My blog post looks at how thermal dissipation is growing to be a much bigger beast than ever before as semiconductor companies and OSATs strive to better their products in the battle against time-to-market and better performance by stacking integrated circuits (ICs) in a package. Then I’ll be taking a look at how you can overcome thermal issues using new methodology through bringing the package, chip and board design environments together.

          Icon

          EMC Design Basics

          You’ll already be well aware that EMC compliance is a necessary condition for releasing products to market. There’s National and International bodies such as the IEC and the FCC that define limits on how much a device is allowed to produce, and the how stringent these are will vary according to industry.

          Icon

          I Wish I Could Use PCB Design Software to Pack My Suitcase

          Which is a little like what you get with the latest update of CR-8000 Design Force. Instead of using stylized shapes defined by boundary boxes, CR-8000 Design Force now uses a true 3D component model with a precisely-matched 3D shape, making enclosure collision checks and 3D clearance checks much more accurate. And making fastening the enclosure lid straightforward.

          Icon

          3D Multi-board Product-level PCB and IC Packaging Design

          A new generation of 3D multi-board product-level design tools manages multi-board placement in both 2D and 3D and enables co-design of the chip, package and board in a single environment. Multi-board design makes it possible to create and validate a design with any combination of system-on-chips (SoC), packages and PCBs as a complete system. Chip-package-board co-design enables designers to optimize routability via pin assignment, and I/O placement to minimize layer counts between the package, chip and board. The new design methodology makes it possible to deliver more functional, higher performing and less expensive products to market in less time.

          Icon

          Four Steps to an Integrated Knowledge-driven Design Flow

          Within the engineering environment the above Latin phrase correlates well with new product development. As design cycles condense and first pass success becomes essential, the need to ensure that engineering requirements, best practices, design guidelines and lessons learned are all properly used to drive product development becomes paramount. Repeating the same mistakes, missing key requirements, and failure to follow design guidelines all cost time and money.

          Icon

          The Natural Progression Toward Vendor Integration in EDA

          Today I’m going to be talking about the gradual convergence of EDA single tools to integrated systems. In the early days of HiFi home entertainment systems, specialist vendors provided separate record (vinyl!) decks, amplifiers and speakers, then left it to the ingenuity of the customer to build their own system – they still do for the serious audiophiles.

          Icon

          A Case for a Complete System in a 3D Co-design Environment

          In this two part series of blog posts I’m going to talk about the design challenges of complex system-on-chips (SoCs) and through-silicon vias (TSVs), and how you can overcome many difficulties by using a 3D co-design environment.

          Icon

          How to Protect PCB Design Intellectual Property

          As companies benefit from the global supply chain in terms of lower production costs and faster turnaround times, they are also exposing their intellectual property to third parties, including PCB design data.

          Icon

          Top Tips for Multi-board Design Using a System-level Approach

          In my time working with companies in the automotive, telecom/wireless and defense industries, I often hear of the many issues facing design teams as they tackle projects made-up of multiple PCBs connected by flexible PCBs, cables, or with a backplane board. Often, the challenge arises when defining and implementing the interconnects across boards, and managing changes throughout the course of the PCB design process. Today I’m going to share with you, my top tips for overcoming these issues.

          Icon

          How to Achieve Proper Placement of Passive Devices Used for Enet Signal Termination

          It’s no secret that placing passive devices in the proper location, whether it is nearer to the source/driver or the receiver/load pins, makes the difference between poor signal integrity and optimal signal integrity. Often this can be impacted by a breakdown in communications between circuit designers and PCB designers.

          Icon

          Implementing FPGAs with PCBS through Intelligent Communication

          Incorporating FPGAs into PCBs designs can be tricky and involves a constant dialog of communication between the FPGA designer and design and PCB/layout designer throughout the process – which can be tiresome, tedious and, worst of all, time-consuming.

            Overview Movies

            Design Products, Not Just Boards

            ANSYS Partnership

            ECAD XVII - Comparing Layer Stackups of Zuken and ANSYS

            ECAD XVI - CR-8000 Design Force to ANSYS Slwave

            ECAD XVII - CR-8000 Design Force to Slwave via EDB

            Design Force Movies

            ECAD/MCAD Integration: Align PCB with Enclosure

            ECAD/MCAD Integration: Configure Multi-board

            ECAD/MCAD Integration: 3D Collision and Clearance Checking

            Power Integrity Analyzer

            Automatic Tuning of Differential Pairs

            Design Force to AWR Microwave Integration

            System-level PCB Design Environment

            Design Gateway Movies

            Evaluating Signal Continuity across a Product-level Schematic